
By method of electron microscopy (magnification of 120000) the extensive accumulation of loose particles with size of 80–100 Å was found in catalyst KT-17, micro-diffraction of them shows the formation of phase — Pt₃Mo (ICPDS, 17–719) (Fig. 2, *a*). Small unit of dense particles with size of 50–60 Å is observed in the same catalytic system (Fig. 2, *b*). According to micro-diffraction data, particles have close sets of interplanar distances corresponding to several phases of Pt-Fe: PtFe — tetraferroplatinum (JCPDS, 26– 1139); (Pt, Fe) — platinum, ferroan (JCPDS, 29–717, 29–718); Pt₃Fe — isoferroplatinum (JCPDS, 29–716).

Accumulations of large Pt crystals (200 Å) with signs of cutting on the smooth surface of zeolite component of carrier are detected in KT-18 (Fig. 2, *c*). Small rounded clusters (dark particles) composed of CeO₂ particles of 30 Å size are visible. Circular micro-diffraction data of particles with size of 30 Å can be equally attributed to Ce₆O₁₁ (JCPDS, 32–196) and C-Fe₂O₃ (JCPDS, 16–835). Large cluster of 30–50 Å particles, which give circular diffraction of CeO₂ (JCPDS, 34–394) and unit of dense particles of 100–200 Å, microdefraction picture of which is represented by reflexes and can be attributed to sulfur (JCPDS, 27–101), were found in KT-18 (Fig. 2, *d*).

a, *b* — KT-17; *c*, *d* — KT-18. Magnification 120000

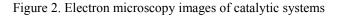


Table 1 summarizes data on metal active sites of KT-17 and KT-18 catalysts nature.

Table 1

State and structure of particles in calcined (500°C, 5 h) zeolite-containing Pt(0,4 %)-Fe(5 %)/Al₂O₃ catalysts modified with cerium, molybdenum and phosphorus (KT-17) and with cerium and phosphorus (KT-18)

Chemical composition and dispersion of KT-17					
Iron	Platinum		Cerium		Molybdenum
Fe (d = 50-60 Å) $FeFe_2O_4 (d = 100-300 \text{ Å})$ $Fe_2PO_5 (d = 40-80 \text{ Å})$	Pt (d = 50-60 Å) PtFe (d = 50-60 Å) Pt ₃ Fe (d = 50-60 Å) Pt ₃ Mo ₂ , β -Pt ₃ Mo (d = 80-100 Å)		$CeP_2 (d = 40-50 \text{ Å})$ CeP (d = ~300 Å)		MoOPO ₄ (d = $\sim 15 \text{ Å}$) MoO ₂ (d = 100–300 Å)
Chemical composition and dispersion of KT-18					
Iron		Platinum		Cerium	
$\begin{array}{c} \varepsilon \text{-Fe}_2 \text{O}_3 \ (30 \ \text{\AA}) \\ \eta \text{-Fe}_2 \text{O}_3 \ (d = 30 50 \ \text{\AA}) \\ \text{Fe}_2 \text{O}_3 \ (d = 30 50 \ \text{\AA}) \end{array}$		Pt (d = 200 Å)		$CeO_{2} (d = 30-50 \text{ Å})$ $CeP (d = 100-200 \text{ Å})$ $Ce_{6}O_{11} (d = 30 \text{ Å})$ $CeAIO_{3} (d = 30-50 \text{ Å})$	

As it can be observed from Table 1, KT-17 catalyst sample contains homonuclear particles of Pt and Fe (50–60 Å), Fe₂PO₅, MoOPO₄ (15–300 Å) compounds, as well as homonuclear and heteronuclear clusters. Homonuclear clusters include FeFe₂O₄, molybdenum oxide MoO₂, the size of which varies from 100 to 300 Å. Heteronuclear clusters include PtFe, Pt₃Fe, Pt₃Mo₂, β -Pt₃Mo, CeP₂, CeP. These heteronuclear clusters have dimensions from 40 to 100 Å and 300 Å. According to electron-microscopic studies, KT-17 catalyst is nanostructured system of complex composition with particle sizes mainly from 15 to 100 Å.

KT-18 catalyst sample contains homonuclear particles of Pt, 200 Å in size, iron oxides and cerium oxides, the sizes of which range from 30 to 50 Å (Table 1). Heteronuclear cluster CeP (100–200 Å) and